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Is there an exact potential energy surface?
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Abstract Transition state theory was introduced in the

1930s to account for chemical reactions. Central to this

theory is the idea of a potential energy surface (PES). It

was assumed that quantum mechanical computation, when

it became possible, would yield such surfaces, but for the

time being they would have to be constructed empirically.

The approach was very successful. Nowadays, quantum

mechanical ab initio electronic structure calculations are

possible and from their results PESs can be constructed.

Such surfaces are now widely used in the explanation of

chemical reactions in place of the traditional empirical

ones. It is argued here that theoretical basis of such PESs is

not quite as clear as is usually assumed and that, from a

quantum mechanical perspective, certain puzzles remain.

Keywords Potential energy surface � Schrödinger

Coulomb Hamiltonian � Permutational symmetry

1 Introduction

From the standpoint of quantum mechanics, the potential

energy surface (PES) arises from treating the nuclear

variables of a collection of electrons and nuclei, formally

described by the Schrödinger Coulomb Hamiltonian, as

parameters rather than variables. The basis for this

approach is nowadays taken to be the work of Born, which

is most conveniently found in [1] but is often referred to as

‘‘making the Born–Oppenheimer approximation’’. In order

to introduce notation, a brief resume of this well-known

approach will be given here.

Born’s approach begins from Schrödinger’s Hamilto-

nian for a system of N variables, xi
e, describing the elec-

trons and another set of A variables, xi
n, describing the

nuclei and NT = N ? A.

When the nuclei are clamped at a particular fixed

geometry specified by the constant vectors ai; i ¼
1; 2; . . .;A; these constant vectors can be regarded as aris-

ing by assigning the values ai to the nuclear variables xi
n, in

the full Schrödinger Hamiltonian.

Hcnða; xeÞ ¼ � �h2

2m

XN

i¼1

r2ðxe
i Þ �

e2

4p�0

XA

i¼1

XN

j¼1

Zi

jxe
j � aij

þ e2

8p�0

X0
L

i;j¼1

1

jxe
i � xe

j j
ð1Þ

The clamped nucleus problem has solutions of the form

Hcnða; xeÞwcn
p ða; xeÞ ¼ Ecn

p ðaÞw
cn
p ða; xeÞ ð2Þ

In the present context, it is customary to incorporate the

nuclear repulsion energy into the clamped nuclei problem

and to use the Hamiltonian

Hbo ¼ Hcnða; xeÞ þ e2

8p�0

X0
A

i;j¼1

ZiZj

jai � ajj
� H þ VnðaÞ ð3Þ

The extra term here is merely an additive constant and so

does not affect the form of the electronic wavefunction. It

affects the spectrum of the clamped nucleus Hamiltonian

only trivially by changing the origin of the clamped

nucleus electronic energy so that,
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Ecn
p ðaÞ ! Ecn

p ðaÞ þ VnðaÞ ¼ Vcn
p ðaÞ ð4Þ

If the clamped nuclei solutions were known for all

values that could be taken by a, they would constitute the

solution set wp
cn(xn , xe).

The full Hamiltonian may be written as

Hðxn; xeÞ ¼ KnðxnÞ þ Hbomðxn; xeÞ ð5Þ

where Kn is the kinetic energy operator for the nuclei,

which can be written symbolically as

XA

k¼1

pn
k

2

2mk

and, although Born does not explicitly require it, the

Hamiltonian Hbo is implicitly generalised to allow for

nuclear motion as

Hbomðxn; xÞ ¼ Hcnðxn; xeÞ þ e2

8p�0

X0
A

i;j¼1

ZiZj

jxn
i � xn

j j
ð6Þ

The eigenfunctions of this Hamiltonian are assumed to be

of the form wi
n(xn , xe) generalising those of (2) and to lead

to a potential Vbom
p ðxnÞ generalising that of (4). It is this

Hamiltonian which is often referred to as the electronic

Hamiltonian.

Assuming that full problem had eigenstates such that

Hðxn; xeÞwðxn; xeÞ ¼ Ewðxn; xeÞ; ð7Þ

then the solutions could be expanded as a sum of products

of the form

wðxn; xeÞ ¼
X

p

UpðxnÞwbom
p ðxn; xeÞ ð8Þ

where UpðxnÞ describes the nuclear motion and wi
n (xn, xe)

is an eigenfunction of the electronic Hamiltonian (6).

However, the status of the electronic function is not

entirely clear as will be seen shortly.

2 The mathematics of the Born approach

In 1951, Kato [2] established that the full (Coulomb)

Hamiltonian, H , is essentially self-adjoint.1 This property,

which is stronger than Hermiticity, guarantees that the time

evolution

WðtÞ ¼ expð�iHt=�hÞWð0Þ

of a Schrödinger wavefunction is unitary and so conserves

probability [3]. This is not true for operators that are

Hermitian but not self-adjoint. It is easy enough to construct

examples of such operators; an example given by Thirring

[4] is of the radial momentum operator �i�ho=or acting on

functions /(r), /(0) = 0 with 0� r\1:
What Kato showed in Lemma 4 of his paper was that for

a Coulomb potential V and for any function f in the domain

D0 of the full kinetic energy operator T0; the domain of full

problem DV contains D0 and there are two constants

a, b such that

jjVf jj � ajjT0f jj þ bjjf jj

and that a can be taken as small as is liked. Thus, the

potential energy is bounded relatively to the kinetic energy.

Given this result, he proved in Lemma 5 that the usual

operator has a unique self-adjoint extension and thus is

indeed, for all practical purposes, self-adjoint and is boun-

ded from below. The sort of problems that can arise if an

operator is not self-adjoint or does not have a unique self-

adjoint extension are discussed in an accessible way in [5].

In the present context, the important point to note is that

the Coulomb term is small only in comparison with the

kinetic energy term involving the same set of variables. So

the absence of one or more kinetic energy terms from the

Hamiltonian means that the Coulomb potential term cannot

be treated as small and the Hamiltonian will no longer be

self-adjoint in the way demonstrated by Kato. This is not

because it ceases to be intrinsically self-adjoint but because

the Hamiltonian ceases to be self-adjoint on the domain of

the complete kinetic energy operator. It is thus a problem

of the extension. This is not to say that there is anything

wrong with solutions to the clamped nuclei problem (3).

Here the nuclei are fixed and the potential involves only the

electronic variables, and the only requirement for self-ad-

jointness is that there be an electronic kinetic energy term

for each potential term. It does however mean the Hamil-

tonian (6) (the soi-disant electronic Hamiltonian) is not

self-adjoint in the Kato sense. The problem is essentially

one of domain and to deal with that, the differential

equation approach to the electronic problem must be

replaced with an approach that starts from the clamped

nuclei Hamiltonian.

3 Defining an electronic Hamiltonian

The full Hamiltonian is invariant under all uniform trans-

lations of the variables, under all orthogonal transforma-

tions of the variables and under the permutation of all

variables that correspond to particles of equal charge and

mass. It is the first of these invariances that has the most

immediate consequences. It implies that the full Hamilto-

nian has a completely continuous spectrum arising from the

free motion of the whole system (atom, molecule, ion or

whatever) through space. Any bound-states corresponding

1 The work was completed in 1944 and was actually received by the

journal in October 1948.
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to discrete values in the spectrum will be clouded by this

continuum, which must be removed before attention can be

focused on square integrable eigenfunctions. This can be

done easily by separating the centre-of-mass motion by

choosing the centre-of-mass coordinate and NT - 1 trans-

lationally invariant coordinates and transforming the

Hamiltonian to have a part corresponding to the free motion

of the centre-of-mass and a part H0 composed from the

translationally invariant coordinates. Although it was not

mentioned earlier, this is actually what Kato did and it was

the translationally invariant Hamiltonian that he showed to

be essentially self-adjoint. He also pointed out that his proof

permitted a trivial extension to cover the full Hamiltonian,

so what has been said about self-adjointness previously

needs no modification. The use of a translationally invariant

form poses a problem, however, because one variable has

been lost when translational motion has been removed and

the translationally invariant coordinates can consist of lin-

ear combinations of all the laboratory coordinates. The

spectrum of H0 is independent of linear combination choice

but rather special choices must be made in order to obtain a

set of coordinates in which the electronic and nuclear parts

can be recognised and the permutational invariances

retained. The general problem is discussed in [6]. However,

for present purposes in order to identify the electrons let the

translationally invariant electronic coordinates be chosen

with respect to the centre-of-nuclear mass.

te
i ¼ xe

i � X; X ¼ M�1
X

i¼1

mix
n
i ; M ¼

XA

i¼1

mi

in the case of the atom A = 1 and the origin is the nucleus.

There is no need to specify the proposed A - 1 transla-

tionally invariant nuclear variables tn other than to say that

are expressed entirely in terms of the laboratory nuclear

coordinates by means of a A by A - 1 matrix Vn in which

the elements of each column sum to zero.

The electronic Hamiltonian now becomes

H
0eðxn; teÞ ¼ � �h2

2m

XN

i¼1

r2ðte
i Þ �

�h2

2M

XN

i;j¼1

r~ðte
i Þ � r~ðte

j Þ

� e2

4p�0

XA

i¼1

XN

j¼1

Zi

jte
j � xn

i j

þ e2

8p�0

X0
N

i;j¼1

1

jte
i � te

j j
þ
X0

A

i;j¼1

ZiZj

jxn
i � xn

j j

 !

ð9Þ

where it is understood that the xi
n are to be realised by a

suitable linear combination of the ti
n. The electronic

Hamiltonian is properly translationally invariant and would

yield the usual form were the nuclear masses to increase

without limit. Were the nuclear positions to be chosen

directly as a translationally invariant set, it would be those

values that would appear in the place of the nuclear

variables.

The nuclear part involves only kinetic energy operators

and has the form:

KnðtnÞ ¼ � �h2

2

XA�1

i;j¼1

1

lij

r~ðtn
i Þ:r~ðtn

j Þ ð10Þ

with the inverse mass matrix l defined in terms of the

inverse nuclear masses and the elements of Vn.

The self-adjointness of (9) requires consideration

according to the number of nuclei. For an atom, there is no

nuclear kinetic energy part and, denoting the nuclear mass

by mn, the full Hamiltonian is simply the electronic

Hamiltonian.

H
0eðteÞ ¼ � �h2

2m

XN

i¼1

r2ðte
i Þ �

�h2

2mn

XN

i;j¼1

r~ðte
i Þ � r~ðte

j Þ

� e2

4p�0

XN

j¼1

Zi

jte
j j
þ e2

8p�0

X0
N

i;j¼1

1

jte
i � te

j j
ð11Þ

The electronic problem for the atom (11) has exactly the

same form as the full problem and as required by the Kato

self-adjointness conditions, for there is a kinetic energy

operator in all of the variables that are used to specify the

potential terms. This would continue to be the case were

the nuclear mass to increase without limit. The atom is

sometimes used as an illustration when considering the

original form of the Born–Oppenheimer approximation but

the only aspect of the approximation that can be thus

illustrated is the translational motion part and that is easily

considered in first order by treating the second term in (11)

as a perturbation to the solution obtained using an infinite

nuclear mass. The inclusion of this term in this way is

analogous to making the diagonal Born–Oppenheimer

correction and it can be made exactly in the case of any

one-electron atom. The Born–Oppenheimer approach

therefore plays no important part in the consideration of the

eigenfunctions of an atomic problem. For systems con-

taining more than a single nucleus, (9) can never be

properly self-adjoint even if the nuclear masses increase

without limit and so it cannot be used directly in attempting

solutions to the full problem.

To turn now to how an electronic Hamiltonian might be

defined properly for a system with more than a single

nucleus, let it be assumed that a chosen set of A nuclear

positions generate a set b of A - 1 translationally invariant

nuclear coordinates. It can be seen that the electronic

Hamiltonian (9) commutes with each of the A - 1 nuclear

position variables. Think now of the molecular bound state

space H as the square integrable sections in the trivial fibre

bundle R3ðA�1Þ � L2ðR3NÞ: A fibre bundle is trivial if the
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two spaces have an associated Cartesian product space.

If the base space is a manifold that is only locally a

coordinate space, the bundle would be only locally trivial.

Here, however, the bundle is globally trivial since the base

space is a global coordinate space [7].

The nuclear operator (which is the bare kinetic energy

operator) acts in the base space, that is upon functions

defined on R3(A-1) and the electronic Hamiltonian acts only

upon the fibre defined by the choice of b. (In this case the

fibre is a vector space L2ðR3N ; bÞ and so the fibre bundle in

this context is often called a vector bundle. The spaces for

different b values, are distinct.)

Now write the full electronic Hamiltonian as a direct

integral over the fibres.

H
0eðteÞ ¼

Z�
H
0eðb; teÞdb ð12Þ

where the tn have been replaced by b within the integral, to

emphasise that it is over fixed points that the ‘‘sum’’ is

occurring.

Modern mathematically secure accounts of the Born–

Oppenheimer approximation are given in terms of the elec-

tronic Hamiltonian defined as a direct sum and as such do not

explicitly consider the requirement that the solutions provide

basis functions for the orthogonal group in three dimensions

nor is spin symmetry considered. They do not either consider

the permutational invariance of the full problem. The argu-

ments can however easily be extended to cover spin and

permutational symmetry in the electronic part of the prob-

lem. They cannot however be easily extended to cover the

full angular momentum symmetry and the nuclear permu-

tation symmetry, except for diatomic molecules. The argu-

ments are based on the idea of a potential provided by the

electrons, just as are the traditional arguments, but not

directly upon the idea of PES everywhere defined. The

arguments require only that it is possible to define a potential

sufficiently close to a particular nuclear configuration.

Making such assumptions, it is possible to estimate how

closely a solution constructed from these forms approxi-

mates an exact solution in the region of interest. Serious

difficulties arise in such approaches when a unique potential

cannot be defined, the situation usually called surface

crossing. But even where there is a unique potential, it is not

possible to use perturbation theory, as is traditionally done,

to make the estimation. The best that can be done is by means

of an asymptotic expansion of the WKB type.

The original Born–Oppenheimer argument has been

reconsidered in a mathematically rigorous way by Klein et al.

[8] assuming the potential consists of a single isolated

potential well such that the electronic wavefunction effec-

tively vanishes outside it. This assumption corresponds

exactly to the original assumption of Born and Oppenheimer.

It is not at present clear how these arguments could be

extended to deal with multiple minima resulting from per-

mutational invariance. Since no explicit consideration of

rotational motion has been attempted, nothing can be said

about the rotational motion of the system, though the effects of

inversion symmetry are considered. This work is perhaps most

usefully seen as a justification of the original Born–Oppen-

heimer conclusions for a system in which the nuclei are treated

as identifiable particles in which electronic motion is unaf-

fected by the rotational motion of the whole system.

It is perfectly proper to perform clamped nuclei elec-

tronic structure calculations to obtain electronic energies

and wavefunctions, and if it were possible to construct from

these a set of electronic wave functions wn
e(tn, te) covering

the whole translationally invariant space, then it would be

perfectly proper to attempt a variational solution of the full

problem (8) using nuclear-motion wave functions obtained

using potentials constructed from the electronic energies.

But it would simply be a variational solution valid in the

energy region relevant to the potential. Such a solution

would not have any particular symmetry under the permu-

tation of identical nuclei nor would it show any particular

rotational symmetry were the potential to be treated as

rotationally invariant thus making it simply a function of

nuclear geometry. Its status as an approximation to an exact

solution would thus be somewhat uncertain.

For the present, let this uncertainty be ignored, to con-

sider what might be inferred about a PES were an exact

solution to the translationally invariant form of the

Schrödinger Coulomb Hamiltonian actually known.

4 The PES from an exact solution?

The presentation of a presumed exact bound state solution

of the Schrödinger Coulomb Hamiltonian as a product of

an electronic and a nuclear-motion part has been consid-

ered both by Hunter [9] and, more recently, by Gross [10].

For the present purposes, the Hunter approach will be

employed on the translationally invariant form of the

Hamiltonian, given earlier. Were the exact solution known,

Hunter argues that it could be written in the form

wðtn; teÞ ¼ vðtnÞ/ðtn; teÞ ð13Þ

defining a nuclear wave function by means of

jvðtnÞj2 ¼
Z

wðtn; teÞ�wðtn; teÞdte ð14Þ

then, providing this function has no nodes,2 an ‘‘exact’’

electronic wavefunction could be constructed as

2 A similar requirement must be placed on the denominator in

equation (12) of [11] for the equation to provide a secure definition.
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/ðtn; teÞ ¼ wðtn; teÞ
vðtnÞ ð15Þ

if the normalisation choice
Z

/ðtn; teÞ�/ðtn; teÞdte ¼ 1

is made. In fact it is possible [12] to show that v must be

nodeless even though the usual approximate nuclear

wavefunctions for vibrationally excited states do have

nodes. The electronic wavefunction (15) is therefore

properly defined and a potential energy surface could be

defined in terms of it as

UðtnÞ ¼
Z

/ðtn; teÞ�H0ðtn; teÞ/ðtn; teÞdte ð16Þ

with H0 defined as the sum of (9) and (10) Although no

exact solutions to the full problem are known for a mole-

cule, some extremely good approximate solutions are

known for excited vibrational states of H2 and Czub and

Wolniewicz [13] took such an accurate approximation for

an excited vibrational state in the J = 0 rotational state of

H2 and computed U(R). They found strong spikes in the

potential close to two positions at which the usual wave

function would have nodes. To quote [13]

This destroys completely the concept of a single

internuclear potential in diatomic molecules because

it is not possible to introduce on the basis of non-

adiabatic potentials a single, approximate, mean

potential that would describe well more than one

vibrational level.

It is obvious that in the case of rotations the situation

is even more complex.

Bright Wilson suggested [14] that using the clamped

nucleus Hamiltonian instead of the full one in (16) to define

the potential might avoid the spikes but Hunter in [12]

showed why this was unlikely to be the case and Cassam-

Chenai [15] repeated the work of Czub and Wolniewicz

using an electronic Hamiltonian and showed that exactly

the same spiky behaviour occurred. However, Cassam-

Chenai showed, as Hunter had anticipated, that if one

simply ignored the spikes, the potential was almost exactly

the same as would be obtained by deploying the electronic

Hamiltonian in the usual way. This would seem to be

consistent too with the earlier work of Pack and Hirschf-

elder [16].

Although Gross [10] does not approach the problem in

quite this way, there is reason to believe that this sort of

problem is bound to arise whatever the approach. To see

this simply rewrite (13) to recognise that the exact states

will actually have definite quantum numbers according to

their orthogonal symmetry O, the electronic permutational

symmetry l, the nuclear permutational symmetry j and the

energy n so that it would be more realistic to write

wOljnðtn; teÞ ¼ vOljnðtnÞ/Oljnðtn; teÞ ð17Þ

In the H2 study cited, the first three quantum numbers are

of no relevance, only n remains and here n labels the

vibrational states. There is thus every reason to expect that

the best that can be done from this approach is a distinct

PES for each nuclear-motion state.

At this level, then it cannot be assumed that the potential

surface calculated in the usual way is an approximation to

anything exact but it remains open to see whether it is

possible to associate it with the exact solution when rota-

tional motion is taken into account.

5 Rotational motion in a polyatomic molecule

A transformation to internal coordinates and Eulerian angles

can be made to produce a Hamiltonian in which the rotational

motion is explicit. The cases of two and of three nuclei

present particular and non-general features and so will not be

considered here. For details of the transformation see [6] but

it is sufficient to notice here that the Eulerian angles are to be

chosen as defined by the nuclear variables alone. Such a

transformation yields an electronic Hamiltonian whose

potential terms depend only upon 3A - 6 nuclear internal

coordinates qk which are invariant under all rotation-reflec-

tions of the translationally invariant coordinates. The elec-

tronic variables are simply transformed variables r where the

transformation is an orthogonal one defined by the three

angles /k, k = 1, 2, 3. The angular and internal motion

parts of the Hamiltonian do not separate, and the electronic

angular motion is coupled to the angular motion of the nuclei.

The complete Hamiltonian operator may be written as

HðrÞ þ Kðq; rÞ þ Kð/; q; rÞ ð18Þ

The first term in (18) arises trivially from (9) simply by

replacing the te by the r and so is

HðrÞ ¼ � �h2

2m

XN

i¼1

r2ðriÞ �
�h2

2M

XN

i;j¼1

r~ðriÞ � r~ðrjÞ

� e2

4p�0

XA

i¼1

XN

j¼1

Zi

jrj � xn
i j

þ e2

8p�0

X0
N

i;j¼1

1

jri � rjj
þ
X0

A

i;j¼1

ZiZj

jxn
i � xn

j j
ð19Þ

and

Kð/; q; rÞ ¼ 1

2

X

ab

jabLaLb þ �h
X

a

kaLa

 !
ð20Þ
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and

Kðq; rÞ ¼ � �h2

2

X3A�6

k;l¼1

gkl
o2

oqkoql
þ
X3A�6

k¼1

hk
o

oqk

 !

þ �h2

2

X

ab

jablalb þ
X

a

kala

 !
ð21Þ

L , the total angular momentum operator, involves only the

angular variables, and the angular variables are defined in

terms of the translationally invariant nuclear variables

only. j is an inverse generalised inertia tensor and, though

expressible fully in terms of the qk, is formally dependent

upon the definition of the Eulerian angles. l is the electronic

angular momentum operator divided by �h. The matrix g has

elements that depend on the product of terms arising from

the expression of oqk

otn
ai

while h has elements that depend on

the derivatives with respect to the qk of these partial

derivatives. The ka involves the operators o
oqk

with coeffi-

cients which are elements of a matrix s which involves

products of the first derivatives that form g and those

arising as the same kind of derivative but with respect to

the angular variables. ka also contains the electronic

angular momentum operator with coefficients that are

elements of j: This term couples the electronic and angular

motions.

The Jacobian for the transformation is

jDj�1jjj�
1
2jg� sj�1sT j�

1
2 ð22Þ

The factor |D|-1 is the angular part of the Jacobian and in

the standard parameterisation jDj�1 ¼ sin /2 as required

for the usual interpretation of the matrix elements.

Again the transformed space is a manifold and not a

vector space. There will always be a region in which the

Jacobian for the transformation vanishes for such difficul-

ties will arise somewhere in any transformed coordinate set

that involves angular coordinates to separate off the non-

Cartesian rotational space S3. Difficulties also arise in a

suitable choice of internal coordinates. The interparticle

distances constitute a properly invariant set from which to

construct internal coordinates and a geometrical figure

formed by a choice of clamped nuclei can be specified

uniquely by specifying all the interparticle distances.

However, for3 A [ 4 there are more interparticle distances

than the 3A - 6 internal coordinates allowed following the

construction of the 3 angular coordinates. Thus, if 9 of the

10 possible interparticle distances are chosen as internal

coordinates for the 5-nuclei problem, it is possible to

construct two distinct geometrical figures which generate

the same values of the chosen internal coordinates. To see

this, imagine the nuclei of NH3 clamped with the protons,

numbered 1–3, in a plane and the nitrogen nucleus, num-

bered 4, on the z-axis. Let a fifth nucleus be placed equiv-

alently either above or below the plane of the protons so that

the value of its z-coordinate is either ±a. If we choose nine

interparticle coordinates r12, r13, r14, r15, r23, r24, r25, r34

and r35 as the independent internal coordinates, it is seen

that the two possible positions of the fifth nucleus lead to

exactly the same values of the chosen internal coordinates.

Standard clamped nuclei electronic structure calculations,

which can be performed at any geometry would, at each of

the geometries, yield different electronic energies. If these

energies were assumed to be achievable as a result of

assigning coordinate values in a function of the internal

coordinates, two energies would arise for a single set of

coordinate values and the ‘‘function’’ would not really be a

function since a function must be single valued. It is not that

such geometries are not possible, it is just that with a par-

ticular choice of internal coordinates, they are not distin-

guishable. Of course if r45 was considered, then the two

geometries would be distinguishable and other choices of

internal coordinates are possible in which this problem can

be avoided. But the problem is quite general, see [6] or [18].

If the number of nuclei is five or more, there are always two

or more geometries which are distinct but have the same

internal coordinate specification, whatever the choice of

internal coordinates made.

6 Removing rotational motion in the frame fixed

in the body

One can eliminate angular motion from the problem by

allowing the operator to work on the function and multi-

plying from the left by its complex conjugate and inte-

grating out over the angular variables. This yields an

effective operator within any (J, M, k) rotation-reflection

manifold that depends only on the internal coordinates.

To remove the rotational motion, we write (18) as

HIðq; zÞ þ KRð/; q; zÞ ð23Þ

in which the first term, HI ; consists of the first two terms in

(18). The matrix elements with respect to the angular

variables of the operators that depend only on the qk and

the zi are trivial. Thus

hJ0M0k0 j HI j JMki ¼ dJ0JdM0Mdk0kHI ð24Þ

In what follows, explicit allowance for the diagonal

requirement on J and M will be assumed and the indices

suppressed to save writing. Similarly, the fact that the

integration implied is over / only will be left implicit.

3 For A = 4 the internal coordinate part of the Jacobian becomes

ferociously complicated [17] with singularities when r12 = r34,

r13 = r24 and r14 = r23. The Jacobian for the interparticle distances

in the five particle case is probably even more complicated.
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The second term in (23) becomes

hJMk0 j KR j JMki

¼ �h2

4
ðbþ2CþJkþ1CþJkdk0kþ2 þ b�2C�Jk�1C�Jkdk0k�2Þ

þ �h2

4
ðCþJkðbþ1ð2k þ 1Þ þ kþÞdk0kþ1

þ C�Jkðb�1ð2k � 1Þ þ k�Þdk0k�1Þ

þ �h2

2
ððJðJ þ 1Þ � k2Þbþ b0k2 þ k0kÞdk0k ð25Þ

In this expression

b	2 ¼ ðjxx � jyyÞ=2	 jxy=i

b	1 ¼ jxz 	 jyz=i

b ¼ ðjxx þ jyyÞ=2 b0 ¼ jzz

ð26Þ

and in terms of the ka k0 is kz and the k	 are

k	 ¼ ðkx 	 ky=iÞ ð27Þ

The apparently odd positioning of the complex unit as

1/i when i might have been expected is because the stan-

dard commutation conditions have been chosen for the

internal angular momentum components.

Thus, within any rotational manifold, it is the eigenso-

lutions of the effective Hamiltonian given by (24) and (25)

which are invariant to orthogonal transformations and it is

these functions that will be used to consider the separation

of electronic and nuclear motion.

7 The separation of electronic and nuclear motion

in an embedded frame

The base manifold R3A-6� S3 is clearly coordinatisable in

the region in which the Jacobian (22) does not vanish. Over

that region, it is, in principle, possible to construct fibre

bundles, so it is, in principle, possible to extend mathe-

matically rigorous arguments to the separation of electronic

from nuclear motion even when rotational motion is

explicitly considered. For any given J state, the Schrö-

dinger Coulomb Hamiltonian is, however, now composed

of 2J ? 1 coupled differential equations. It should be

remembered that the label k does not designate a good

quantum number and that states of different k for a given

J may couple extensively or not at all. Unfortunately,

however, any coupling that there might be, involves the

electronic motion because each of the ka contain a term

ðjlÞaÞ: Although the form of j depends upon the choice of

embedding, for the Eckart embedding [19], which is the

one usually chosen,

j ¼ I00
�1

I0I00
�1

where I0 is the inertia tensor for the molecule at the

reference geometry and I00 is of inertia tensor form and

becomes the equilibrium inertia tensor when the nuclear

variables take their equilibrium values. At the equilibrium

values of the nuclear variables, j becomes the inverse

of the equilibrium inertia tensor. The notation is that

of Watson [20]. Thus, with this embedding this part of

coupling matrix will be small only if the matrix elements of

the components of the electronic angular momentum

between the different k labelled states are small.

There has been no detailed mathematical consideration of

this matter but the most useful way to proceed would seem to

be to assume that this part of the coupling is of small effect. It

is natural then to think of the electronic part of the Hamil-

tonian as given by (19). This is however to ignore the last

term in (21). It would be easy to imagine this term included in

the electronic part of the Hamiltonian but for the fact that ka

contains a term in the nuclear variable derivatives. If such a

term is included, it is not the case that this part of the Ham-

iltonian commutes with the nuclear variables and so appro-

priate fibre bundles cannot be constructed over a base space

defined by fixed values of the nuclear variables. In order to

offer an account of the separation of motions analogous to

that offered in the translationally invariant case, the second

part of the last term in (21) cannot be included in the elec-

tronic part of the problem. Consistency would seem to

require that the whole term be ignored for the purposes of an

initial discussion. It might be argued too that the expectation

values of the components of electronic angular momentum

would be small is an assumption consistent with the neglect

of their matrix elements discussed above. Whether or not all

these reservations are valid, a potential can be calculated

using the direct integral form with the part (19) of the

Hamiltonian and it will be properly defined wherever the

domain of the Hamiltonian is restricted to the region in which

Jacobian is non-vanishing. Since this space is a manifold,

care must be taken to make sure that it remains a proper

coordinate space and that the potential is everywhere an

analytic function of the chosen coordinates. A mathematical

discussion in these sort of terms has been attempted only for a

diatomic system in which the internal coordinates are just the

internuclear variable R. In this case, two possible fibre

bundles are constructible on this manifold and it is this

possibility that gives rise to the Berry phase change which

can arise when the internal coordinate R is transported

around a circle of constant latitude. This is discussed in a

mathematically sophisticated way for a rather simplified

model of the diatomic molecule in [21]. The authors refer to

their results as either ‘‘straight up’’ or ‘‘with a twist’’. If it can

be safely assumed that a ‘‘straight up’’ choice has been made,

then it can be assumed that at least locally, a potential VeðqÞ
can be properly defined.
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Assuming that a potential can be calculated from this

part of the rotationally invariant Hamiltonian, then the

nuclear-motion problem involves the Hamiltonian com-

posed of the first part of (21) added to (25) and to the

potential. The terms in (25) other than those involving ka

are simply multiplicative in the variables q and so it is

natural to consider these as to be evaluated at fixed values

of the nuclear variables and to be dealt with along with the

potential. If it can be assumed that it is possible to choose

the embedding so that for the energy range of interest k is

almost a good quantum number, then the effective potential

imagined in these terms would be

VðqÞ ¼ VeðqÞ þ �h2

2
ððJðJ þ 1Þ � k2Þbþ b0k2Þ ð28Þ

For fixed J and k, this extended potential is rotationally

invariant so that the fibre bundle arguments used for the

translationally invariant approach may simply be carried

over. Even with the simplifying assumptions made here, in

principle the potential should be affected by the rotational

motion of the system, and for any given k, the higher the

J value, the shallower the effective potential will become.

This is exactly the behaviour observed in the case of H2

[22] for the electronic R ground state of the molecule

assumed to dissociate into two hydrogen atoms in their

ground states. That work shows that, for example, the

J = 0 state supports just 14 vibrational states while the

J = 15 state supports 10 while the J = 31 supports only 1

state. Of course in a diatomic molecule, states of different

k are states with differ in the electronic angular momentum

and these results cannot be regarded as typifying the results

for a polyatomic system. However, work on H3
? shows that

in the case of J = 0 there are 1,280 vibrational states below

dissociation [23] and that 46 is the highest value of J for

which at least one vibrational state exists [24]. These fig-

ures should be taken as indicative rather than definitive, for

the electronic structure calculations from which they result,

though among the best available, do not have quite the

accuracy that the calculations on H2 cited above do. Nev-

ertheless, it is clear that rotational dependence is not just

relevant for diatomic molecules. However, in general the

importance of the rotational terms will depend on the

values of b and b0. Both of these depend on the reciprocals

of the nuclear masses and thus it is reasonable to expect

their importance to become less as the constituent atomic

masses increase for any given electronic potential. It is

clear that a mathematically sound scheme could be

developed for the separation of electronic and nuclear

motion even when rotational motion is considered though it

might be necessary to recognise rotational dependencies.

However, it now becomes a much more difficult problem to

consider permutational invariance.

8 The permutational invariance of the PES

For the purposes of this discussion, it is convenient to think

of the translation-free nuclear cartesian coordinates tn as

being related to a body-fixed set zn by

tn ¼ Czn ð29Þ

The body-fixed electronic variables can now be defined in

terms of the transformation defined above by:

ri ¼ CT te
i i ¼ 1; 2; ::::N ð30Þ

The three orientation variables are specified by means of an

orthogonal matrix C, parameterised by the three Euler

angles /m, m = 1, 2, 3 as orientation variables. In the

present case, the matrix C is specified entirely in terms of

the A translation-free nuclear variables and so there will be

just 3A - 6 internal variables for the nuclei and so three

relations among the zi
n.

It is necessary to consider the behaviour of both the

internal coordinates and the Euler angles under the permu-

tation of identical nuclei. Because of the choices made in

deriving equation (30), the permutation of electrons is

standard and need not be explicitly considered. However, the

effect on the nuclear variables of a permutation P with rep-

resentative P in the laboratory coordinates induces in the

translationally invariant space the A 9 A representative

matrix

H ¼ Vn�1PVn ð31Þ

The matrix H is not in general in standard permutational

form neither is it orthogonal even though it has determi-

nant ± 1 according to the sign of detP.

Let the (redundant) set of (A - 1)2 scalar products of the

ti be denoted by the square matrix S, of dimension A - 1.

Then, using (31), it is seen that a permutation

Ptn ¼ tnH ¼ t0
n ð32Þ

so that

S0 ¼ HT SH ð33Þ

Making explicit the functional dependencies, (29) may

be written as

tn ¼ Cð/ÞznðqÞ ð34Þ

and using (32) and (33) two different expressions for the

permuted translation-free coordinates may be obtained.

The first follows at once from (34) and (32):

t0
n ¼ tnH ¼ Cð/ÞznðqÞH ð35Þ

and this gives the t0i
n as functions of / and q.

Alternatively, the Euler angles and the internal coordi-

nates can be expressed directly as functions of the tn and

hence of the t0n according to:
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/mðtnÞ ¼ /mðt0
n
H�1Þ ¼ /0mðt0

nÞ ¼ /mð/; qÞ ð36Þ

and

qkðSÞ ¼ qkðH�T S0H�1Þ ¼ q0kðS0Þ ¼ qkðqÞ ð37Þ

Notice that while the effect of the permutation on qk can at

most produce a function of the qk, the effect of the

permutation on /m can produce a function of both the /m

and the qk. If the permuted internal coordinates and Euler

angles are used in (34), the resulting expression will be for

the permuted translation- free variables thus:

t0
n ¼ Cð/ð/; qÞÞznðqðqÞÞ ð38Þ

so that:

t0
n ¼ Cð/; qÞznðqÞ ð39Þ

Equating (35) and (39) it follows that

zn ¼ C
T
CznH ð40Þ

and since this expression can be at most a function of the

internal coordinates, it follows that the orthogonal matrix

C
T
C must have elements which are, at most, functions of

the internal coordinates. Denoting this matrix by U (and

from now on, since they will always be the original body-

fixed ones, the variables will not be explicitly given), it

follows that

zn ¼ UznH ð41Þ

and

C ¼ CUT ð42Þ

giving a relationship (albeit implicit) between the permuted

and unpermuted body-fixed variables. It is as well to state

explicitly that there will be such a relationship for every

distinct permutation, and so strictly the matrices should

carry a designation to indicate which of the permutations is

being considered. But that would be to overload the notation

in a way that is not necessary here and so it will not be done.

Now that these relationships have been established, the

effects of a permutation on the various parts of the wave-

function must now be worked out. To avoid overloading

the notation again, the usual convention will be adopted in

which the change (41) is written:

zn ! UTznH�1 ð43Þ

while (42) is written:

C! CU ð44Þ

when considering the change in a function upon the change

of variables.

The angular momentum eigenfunction |1Mki can be

shown [25] to be writable as

j1Mki ¼ 3

8p2

� �1
2

ðXT CXÞMk ð45Þ

Since the elements of |JMki can be obtained by repeated

vector coupling of the elements of |1Mki it is sufficient to

know how |1Mki transforms in order to know the general

result. Using (44) for the change in C it follows from (45) that:

j1Mki ! 3

8p2

� �1
2

ðXT CUXÞMk

¼ 3

8p2

� �1
2

ðXT CXXyUXÞMk

¼
Xþ1

n¼�1

j1MniD1
nkðUÞ ð46Þ

so that the change induced in the general symmetric-top

function under P is:

jJMki !
XþJ

n¼�J

jJMniDJ
nkðUÞ ð47Þ

In this equation, DJðUÞ is the matrix made up from the

elements of U in exactly the same way that DJ is made up

from the elements of C. A precise account of how this is to

be done is given in Section 6.9 of [26]. Should it turn out

that U is a constant matrix, then DJðUÞ is a constant matrix

and (47) simply represents a linear combination. If U is a

unit matrix, then |JMki is invariant. It should be noted here

that this coupling of rotations by the permutations can

mean that certain rotational states are not allowed by the

Pauli principle and this is important in assigning statistical

weights to rotational states.

It is rather difficult to say anything precise about the

change induced in the qk under the permutation. Of course

since the internal coordinates are expressible entirely in

terms of scalar products4 and the scalar products of the ti
n

are identical to the scalar products of the zi
n, the change is

that given in (37) namely

qðSÞ ! qðH�T SH�1Þ ð48Þ

where the notation of (43) has been used and where S is

regarded as a function of the qk. However, the result has no

general form and so the best that can be said is that a

permutation of nuclei induces a general function change

UJ
kðq; zÞ ! U0Jkðq; zÞ ð49Þ

where the precise nature of the function change depends on

the permutation, the chosen form of the internal

4 Because of this, the internal coordinates are invariant under

inversion, which simply causes the ti
n to change sign. Thus, it is

only the nuclear permutation group and not the permutation-inversion

group which is relevant here.
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coordinates and on the chosen functional form. Thus, the

general change in the wavefunction induced by P can be

written

WJ;Mð/; q; zÞ !
XþJ

k¼�J

XþJ

n¼�J

DJ
nkðUÞU0

J
kðq; zÞjJMni

¼
XþJ

n¼�J

U
J

nðq; zÞjJMni ð50Þ

This expression will clearly be very difficult to handle

for not only will a U be difficult to determine, but one must

be found for each distinct permutation of the identical

nuclei and in a problem of any size there will be a very

large number of such permutations. It would obviously be

desirable to choose a body-fixing matrix, C, that was

invariant under all permutations of identical particles. This

can be done by choosing C to be the matrix that

diagonalises the translation-free instantaneous inertia

tensor and this is how it was chosen in the two very first

attempts to body-fix for molecules, [27] and [28], and it has

been a choice made subsequently on many occasions, see

for example, [29]. However, if this choice is made, then the

resulting Hamiltonian is quite inappropriate for the study of

molecules because the Jacobian for the transformation

vanishes in regions of physical interest. Thus, for a

molecule like ammonia, this happens at what is usually

thought of as its equilibrium geometry. This was among the

reasons that led Eckart to develop his body-fixing

prescription, [19], which is the one that is generally taken

as the basis for the interpretation of molecular spectra. The

embedding defined in this approach is generally invariant

only under the subset of permutations of the identical

nuclei which correspond to point group operations on the

equilibrium geometry figure (for more discussion of this,

see [25] and [30]). Thus, it is clear that it is not always

possible to avoid these difficulties and the fact that they can

arise in the Eckart approach obviously poses some

problems for the standard view of the separation of

rotational and vibrational motion. These matters are

discussed a little more in [31] and [32].

Why these broken symmetry solutions to the clamped

nucleus problem turn out to be so effective in practice has

been a vexing puzzle since the very beginning of molecular

quantum mechanics. It has occasioned an enormous

amount of work, particularly since the publication in 1963

of a paper by H. C. Longuet-Higgins [33] in which per-

mutations were divided into feasible and unfeasible types

and in which it was argued that it was necessary to consider

only the (often rather small) set of feasible permutations in

a given problem. A summary of much of the relevant work

in the area of molecular spectroscopy is reviewed in the

monographs by Ezra [25] and by Bunker [34] and in a more

general context in [35] and [36].

The idea of unfeasibility seems to rest on the notion that the

permutation is a real motion of particles in the potential

computed from a clamped nucleus calculation. If between the

typical geometry and the permuted geometry there is a high

potential barrier, then the permutation is unfeasible. The idea

that a permutation is a real motion of particles is an incon-

gruous one, from a mathematical point of view, as is the idea

of unfeasibility, outside the single product approximation for

the wave function and hence a single uncoupled potential

function. It might however be speculated, within the present

context, that if the usual orbital electronic wavefunction for a

typical geometry is projected so that it has the proper per-

mutational invariance, then the elements in the projected

function that are small and make only a small contribution to

the electronic energy can be neglected without great loss in

energy. It would be the permutations that produce these neg-

ligible terms that can perhaps properly be called unfeasible.

Although calculations could not quite settle this matter, it

would be very interesting to attempt some and to see what

emerged. To do so however would necessitate a proper con-

sideration of the permutation upon the internal and angular

coordinates and it would not be sufficient simply to assume as

is usually done, that the permutations can be realised in terms

of the nuclear cartesian variables nor should inversion be

invoked as relevant to internal motion.

9 Conclusions

This paper has been devoted to trying to ‘‘place’’ the

potential energy function in the context of solutions to the

full problem. As has been shown, this placing is more

problematic than is commonly thought. It cannot therefore

be said, with any confidence at present, to what question

the potential energy function arising from a clamped

nucleus calculation is the answer.
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